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A recent paper [R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, and S. Succi,
Phys. Rev. E 48, R29 (1993)] concluded that the scaling of turbulent structure functions extends
deeper into the viscous subrange than what has been assumed so far. We comment on this notion of
“extended self-similarity.” We verify the (approximate) universal character of the viscous subrange
scaling of structure functions but show that it is different from their inertial range scaling. The
effect is small (although significant) in laboratory flows and it has profound consequences for the

multifractal model.

PACS number(s): 47.27.—i, 02.50.—r, 05.45.+b

The structure function G,(r) quantifies the statistics
of the small-scale structure of turbulence. It is defined as
Gp(r) = (AuP),, where Au(r) = u(z+r)—u(z) is a veloc-
ity difference over a distance r; © and r point in the same
direction. The structure function has scaling behavior,
Gp(r) ~ r¢() over a range of distances | < r < L that
is bounded from below by the action of viscosity, | ~ 307,
and from above by an external length scale L. The in-
terval [I, L] is called the inertial range because viscosity
is not yet felt and the transport of energy is through in-
ertial terms in the Navier-Stokes equation. The energy
dissipation € and the viscosity v define the Kolmogorov
scale 7 = (v /e)/4. The well-known p dependence of
the scaling exponent {(p) = p/3 is exact for p = 3 in the
limit of zero viscosity [1]. For large values of p, devia-
tions of Kolmogorov’s prediction, {(p) = p/3, have been
found; these deviations have prompted the multifractal
model by Parisi and Frisch [2].

The problem in laboratory experiments at moderate
Reynolds numbers (R) =~ 102, based on a correlation
scale A) is that the inertial range is small and it is often
hard to recognize scaling behavior at all. In a recent
paper Benzi et al. [4] find a much improved scaling by
plotting G,(r) as a function of {(|Au|3). The resulting
scaling range seemingly extends to much smaller values
of r, r = 7, a circumstance that prompted the notion
of “extended self-similarity.” A second observation was
that the behavior of G,(r) for 7 < 307 does not depend
on Ry, and, therefore, would be universal.

In this Comment we will show that their second obser-
vation is compatible with experiments in a modest range
of Ry. We will also argue that, although “extended self-
similarity” may appear to be a good approximation to
the behavior of structure functions in the inertial range,
there are significant deviations. At small values of r,
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r < 307, the structure functions display a behavior that
is different from their 30n < r < L inertial range scal-
ing. Specifically, the structure function can be written
as Gp(r) = [rfp(r)]®), with a function f,(r) that, in
the viscous subrange, r < 307, essentially depends on p.
“Extended similarity,” instead, is equivalent to the state-
ment that f,(r) is independent of p. The function f, is
the deviation of the structure function from ideal scaling,
Gp(r) ~ r¢(®). It is a convex function that bends down
into the viscous subrange. It is a trivial observation that
a plot of log G, (r) as a function of, for example, log G3(r)
is only a straight line for all p if f,(r) is the same for all p.
The p dependence of the residual functions f,(r) that we
find is in agreement with multiscaling, an inherent prop-
erty of multifractals [3]. The key point is that stronger
singularities of the turbulent velocity field [that are ex-
pressed in the G,(r) at larger p| extend deeper into the
viscous scales as p increases. Therefore the scaling be-
havior of structure functions of increasing order extends
to smaller r as p increases.

At modest values of Ry (5 x 102-10%) a scaling re-
gion can often be recognized in a log-log plot of G3(r),
however, it is not well defined. The standard procedure
[5] then is to select the interval bounds such that the
straight line fitted to log Gz(logr) in this interval has
slope ((3) = 1. This normalizes the structure functions
Gp(r). It often amounts to a sacrifice of the quality of
the fit to the requirement ¢(3) = 1.

Several other, more explicit ways of normalizing struc-
ture functions have in the past been attempted to im-
prove their scaling behavior. One way is to divide struc-
ture functions of order p by a low-order moment k, for
example, k = 3,

Hp(r) = Gp(r)/Gi(r)- (1)
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The normalization discussed by Benzi et al. [4] is to plot
Gp(r) as a function of Gi(r), using r as parameter,

Ip(r) = Gp(@), a = Gk(r). (2)

In all three instances, the value of the measured ex-
ponents ((p) is always relative to the assumed scaling
behavior of G3(r). There are many experimental reasons
for (small) deviations of ((3) from unity, for example,
deviations from isotropy, homogeneity, or equilibrium of
the flow. It is a question, however, whether these defects
may be cured by normalization.

The normalized structure function Hp(r) would be
most appropriate if the structure functions are of the
form G,(r) = f(r)r¢®) whereas the normalization I,
is more appropriate if G,(r) = [f(r)r]¢®). The latter
normalization is one for the derivative of the structure
function. It dates back to the problem of laser beam
propagation through turbulent media and was first tried
in the context of turbulent structure functions in Ref. [6].
By using this normalization, Benzi et al. [4] come to the
conclusion that G,(r) is of the form Gp(r) = [f(r)r]¢®).
While this form is indeed strongly suggested by the data,
we will demonstrate that the function f(r) essentially de-
pends on p.

The problem is that of all normalizations considered
here, the implicit normalization I,(r) is least sensitive
to the shape of f,(r) (and, therefore, produces the best
overall scaling). Let us define the residue of the struc-
ture function as that which remains if we subtract the
constant ((p) from the local slope of G,, Hp, or I, in
a log-log plot. For the three normalizations considered
here, these residues are, respectively,

R (Inr) = ((p)f), (32)

R (Inr) = ¢(p) £, — C(k) f, (3b)
D (ary = $@) o~ F c
Ronr) = 147 (3)

where f, = dlIn f,/dInr. The function f,(r) is convex,

therefore R() is the smallest of the three residues. The
conclusion is that from a plot involving normalization
I, one would be tempted to conclude a function f,(r)
that is the same for all p. Only in the case of very good
statistical accuracy would one recover the p dependence
of fp(r).

The statistical accuracy of high order structure func-
tions is notoriously problematic. For increasing order p,
Gp(r) is an average over the increasingly rare instances
of increasingly large velocity differences. We have built a
special digital device that can measure high-order struc-
ture functions in real time through accumulated probabil-
ity distribution functions of Au(r). The maximum num-
ber of velocity samples that we have taken is 1.5x10°?, two
orders of magnitude larger than what has been customary
so far. Not only has this significantly eased the statis-
tics problem, but the absence of stored time series and
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FIG. 1. The residual function log,o(fp/f2) for p = 4
(dashed lines) and p = 8 (full lines) for a turbulent jet flow
and for grid-generated turbulence. The mean air velocities
were U = 12 m/s and 11 m/s and the Kolmogorov lengths
n were 9.5 X 107° m and 1.9 x 10~* m, respectively. There-
fore the lines for the grid turbulence are the ones that extend
deepest into the viscous subrange. The fact that for » < 309
the higher moment is larger indicates that f, becomes flatter.

the immediate availability of the structure function has
allowed systematic experimentation with the flow condi-
tions.

Figure 1 shows the residue, log,o(fp/f2), for a turbu-
lent flow behind a grid (R = 5.3 x 10%) and a turbulent
flow from a jet (Ry = 8.0 x 102) [7]. The measured
function f,/f> is significantly different from one. At the
smallest scales, 7 < 307, f,/f. increases with increas-
ing p. Because the function f, is convex, the result of
Fig. 1 demonstrates that for r < 30n f, becomes flat-
ter with increasing p. This behavior is consistent with
the multiscaling hypothesis [3,8,9]. Because the p de-
pendence of f,/f2 is weak, the result of Fig. 1 also indi-
cates that for the even moments, p < 8, extended self-
similarity is a good approximation. It is correct to within
|logy0(fp/ f2)] < 0.08.

For large enough Reynolds numbers a flow approaches
the situation of homogeneity and isotropy to which Kol-
mogorov’s scaling laws apply. For the flows with the
largest R that exhibit a clear scaling behavior, we found
that all normalizations produced the same ((p). Normal-
ization I,(r) is clearly superior in the case that G,(r)
does not exhibit obvious scaling. However, at small R
the questions about homogeneity and isotropy become
urgent. Probably for reasons of statistics, Benzi et al. [4]
compute normalization I, with (|Au[3). It is not clear
that (|Au|®) ~ r. Indeed, we have found significant dif-
ferences with the proper normalization that does not in-
volve absolute values.

This work is part of the “Stichting voor Fundamenteel
Onderzoek der Materie (FOM),” which is financially sup-
ported by the “Nederlandse Organisatie voor Weten-
schappelijk Onderzoek (NWO).”
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cases the 12 bits of velocity data were acquired with a
20 kHz sampling rate and using a four pole antialiasing
filter at 10 kHz.

G. Stolovitsky and K.R. Sreenivasan, Phys. Rev. E 48, 33
(1993) also find deviations from extended self-similarity
in boundary-layer turbulence. The deviations found are
in the opposite direction (towards a more strongly curved
fp as p increases). We have experimentally verified their
conclusion and have found that the different behavior of
fp is caused by the proximity of the start of the boundary
layer and by the proximity of the wall.

The results shown here are typical for the results obtained
in different turbulent flows. These will be presented in a
forthcoming publication. The jet data have the smallest
Kolmogorov length 7; the first point at /n = 12 in Fig. 1
is, therefore, at the edge of our instrumental time resolu-
tion. By also showing the grid turbulence data whose Kol-
mogorov frequency (fr = U/n) is a factor of 2 smaller we
demonstrate that the limitation on time resolution does
not significantly influence our results. We have also sys-
tematically varied fi in the jet experiment which produced
consistent results for the residues. We have not been able
to observe a dependence of the shape of f,(r) on Rx. The
multiscaling hypothesis predicts a very weak dependence
on the log of Ry [3].



